Detecting Failures of Neural Machine Translation In the Absence of Reference Translations

Wenyu Wang^{UI} Wujie Zheng^{TC} Dian Liu^{TC} Changrong Zhang^{TC}

Qinsong Zeng^{TC} Yuetang Deng^{TC} Wei Yang^{UT} Pinjia He^{EZ} Tao Xie^{UI}

Neural Machine Translation (NMT)

- $argmax_{d_1,d_2,...} P(d_1,d_2,...|s_1,s_2,...)$
- Statistical models -> neural networks
- Extensively researched & widely adopted
 - Satisfactory performance
 - Simpler architectures

Source: http://opennmt.net/

NMT Systems Can Be Error-prone

- Translation failures instead of software failures
 - Incorrect word/phrase translations
 - Incorrect semantics
 - ... and many more
- Consequences are generally undesirable
 - Unsatisfactory user experience
 - Severe reputational and/or financial loss
- Still widely existing...

Source: https://www.k-international.com/blog/translation-fails-2018/

10 Hilarious Translation Fails From 2018

June 14, 2018 / 1 Comment / in Language Blog / by Richard Brooks

Source: https://www.rws.com/insights/rws-moravia-blog/ eight-of-the-most-bizarre-translation-fails-of-2018/

8 NOV 2018 | RWS MORAVIA BLOG |

TOPICS: JUST FOR FUN / MACHINE TRANSLATION (MT) / TRANSLATION /

Eight of the Most Bizarre Machine Translation Fails of 2018

Source: https://www.searchenginepeople.com/blog/10-google-translate-fails.html

10 Inexplicable Google Translate Fails

NMT Quality Assurance: Common Practice

- Reference-based black-box system testing
 - Performed during in-house development
 - Evaluate on human-made bilingual parallel corpora
 - Calculate and observe translation quality indicators (e.g., BLEU scores)

NMT Quality Assurance: What About Being Reference-free?

- Desirable benefits in industrial settings
 - Helping with translation quality improvement on more data
 - Enabling in-vivo testing and continuous monitoring in the production environment
 - Handling translation failures gracefully
- Existing approaches do not fulfill such demand
- ➤ We aim for a practical and scalable solution to this challenge for our product

Reference-free Translation Failure Detection: Our Approach

- Focus on the 1-to-1 constituent mapping property of translation
 - Can be checked systematically
- Leverage both original texts and translated texts
 - As opposed to reference-based approaches
- Hybrid property violation detection strategy
 - Both statistical and systematic analysis

Constituent Mapping Property

- Constituents (e.g., words/phrases) are generally 1-to-1 mapped
 - Between the original text and the translation
- Any violation of this property in the translation indicates potential translation failures
- Two types of violations: under- and overtranslation
 - Many translation failures can be reflected through these two types of violations

Under- and Over-translation

 Under-translation: words/phrases from the original text are missing in the translation

Chinese (original)	English (translated)	English (reference)
三姑给你的红包 给你妈妈了	Third Aunt gave you a red envelope.	Third Aunt gave your red envelope to your <i>mother</i> .
C 1-31-2 CI 1-1	a red envelope.	envelope to your <u>mother</u> .

Example of under-translation

 Over-translation: unnecessary repeats of words/phrases in the translation

English (original)	Chinese (translated)
U have to admit that something <u>can never</u> <u>be changed</u> , live with it or break with it!	你必须承认,有些东西是永远无法改变的, <u>无</u> 法改变的,无法改变的,无法改变的!

Example of over-translation

Overview of Violation Detection

• First step: build mappings between bilingual words/phrases using training parallel corpora

Overview of Violation Detection

- Under-translation detection: check the existence of word/phrase translations w.r.t. mappings
 - Need to consider implicit translations

Overview of Violation Detection

 Over-translation detection: compare the occurrences of words/phrases in the original text and translation

Bilingual Mapping Building: Phrase Identification

- Necessary because phrases can convey different meanings from just their comprising words
- Intuitive way: consider all frequently-occurring continuous word sequences with length <= k
 - $W_1W_2W_3W_4W_5...$ -> < W_1, W_2, W_3 > < W_2, W_3, W_4 > < $W_3W_4W_5$ > ...
 - But phrases can have variations
- Our approach: consider frequently-occurring word pairs that are <= k away from each other
 - $W_1W_2W_3W_4W_5...$ -> $< W_1, W_2 > < W_1, W_3 > < W_1W_4 > < W_2, W_3 > < < W_2, W_4 > < < W_2, W_5 > ... (k = 3)$
 - For both efficiency and robustness

Bilingual Mapping Building: Mapping Learning

- Item-based Collaborative Filtering
 - User rating matrix -> item recommendations
 - Similar items should have similar rating distributions

Credit: Sarwar, Badrul Munir, George Karypis, Joseph A. Konstan, and John Riedl. "Item-based Collaborative Filtering Recommendation Algorithms." WWW 2001.

Bilingual Mapping Building: Mapping Learning

- Item-based Collaborative Filtering
 - Item -> each word/phrase in the source/destination languages
 - User -> each bilingual sentence pair
 - Rating -> whether the word/phrase appears in the sentence pair (of the corresponding language)
 - Similarity -> Cosine similarity of rating vectors

$$M_{k,w} = \begin{cases} 1 & \text{if } w \text{ appears in } P_s^k \text{ or } P_d^k \\ 0 & \text{otherwise} \end{cases}$$

$$R_{w_s,w_d} = \frac{\overrightarrow{M_{\cdot,w_s}} \cdot \overrightarrow{M_{\cdot,w_d}}}{||\overrightarrow{M_{\cdot,w_s}}||_2 \cdot ||\overrightarrow{M_{\cdot,w_d}}||_2} = \frac{\sum_k M_{k,w_s} M_{k,w_d}}{\sqrt{\sum_k M_{k,w_s}^2} \sqrt{\sum_k M_{k,w_d}^2}}$$

Under-translation Detection

 Check the existence of each word/phrase translation w.r.t. mappings

	• • •
三姑给你的红包 Third Aunt gave yo	ou Third Aunt gave your red
给你 <u>妈妈</u> 了 a red envelope.	envelope to your <u>mother</u> .

Origin	# 1	# 2	# 3	# 4	# 5
妈妈	mother	mom	mum	mama	mommy

- Caveat: implicit translations
 - Some words/phrases might not need to appear in the translation text

Under-translation Detection: Handling Implicit Translations

- Error-rate filtering
 - A word/phrase causes too many translation failures -> Likely the word/phrase does not need to be explicitly translated
- $e_w = \#_w^{err} / \#_w$ for each word/phrase w
 - Calculated on the training corpora
- A pre-defined threshold from experiments
 - $e_w < 0.2$ in our case

Over-translation Detection

- Find duplicate words/phrases in the translation
 - Not sufficient evidence of over-translation
- Reverse-lookup duplicated words/phrases w.r.t. mappings
- Is # of corresponding words/phrases < duplicated translation occurrences?

Algorithm Effectiveness Evaluation

- 4 manually labeled datasets
 - Real-world translation tasks + corresponding translations with under-/over-translation
 - News and oral sentences between English and Chinese
- 2 alternative algorithms for comparison
 - Generic dictionary lookup
 - Word-alignment from SMT
- Highest F-measures in all tasks

- Deployed on WeChat, a messenger app with over one billion monthly active users worldwide
 - Message translation function, powered by a proprietary NMT system
- Process about 12 million translation tasks daily

- Fully rolled out in the production environment
 - Reveal issues undetected by in-house testing
 - Handle failures instantly through alternative models
 - Monitor the performance of newly-deployed models
- Lead to significant drop of two types of violations

- Help build an in-house test set for regular development
 - 130,000 English and 180,000 Chinese words/phrases
 - Reveal design/implementation/training data defects in both ours and competing NMT systems

Provider	Original	Given	Expected
Name	Text	Translation	Translation
Prvd. A	成人	mature people	adult
Prvd. A	太好了	what fun	great
Prvd. B	large-scale	large-scale	大规模
Prvd. B	long-term	long-term	长期
Prvd. B	U.S.	U.S.	美国
Prvd. C	蛋糕	Runeberg torte	cake
Prvd. C	酸奶	Viili	yoghurt
Prvd. D	疟原虫	p.	plasmodium
Prvd. D	酶原	The original enzyme	zymogen

NMT Quality Assurance: Common Practice

- Reference-based black-box system testing
 - · Performed during in-house development
 - Evaluate on human-made bilingual parallel corpora
 - Calculate and observe translation quality indicators (e.g., BLEU scores)

Algorithm Effectiveness Evaluation

- 4 manually labeled datasets
 - Real-world translation tasks + corresponding translations with under-/over-translation
 - News and oral sentences between English and Chinese
- 2 alternative algorithms for comparison
 - Generic dictionary lookup
 - Word-alignment from SMT
- Highest F-measures in all tasks

Overview of Violation Detection

 Over-translation detection: compare the occurrences of words/phrases in the original text and translation

- Fully rolled out in the production environment
 - Reveal issues undetected by in-house testing
 - Handle failures instantly through alternative models
 - Monitor the performance of newly-deployed models
- Lead to significant drop of two types of violations

Thanks!

The authors from Illinois CS were supported in part by NSF under grants no. CNS-1513939, CNS-1564274, CCF-1816615, and by a 3M Foundation Fellowship.