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Source: http://opennmt.net/

Neural Machine Translation (NMT)

• 𝑎𝑟𝑔𝑚𝑎𝑥!!,!",… 𝑃(𝑑$, 𝑑%, … |𝑠$, 𝑠%, … )
• Statistical models -> neural networks

• Extensively researched & widely adopted
• Satisfactory performance
• Simpler architectures
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NMT Systems Can Be Error-prone

• Translation failures instead of software failures
• Incorrect word/phrase translations
• Incorrect semantics
• . . . and many more

• Consequences are generally undesirable
• Unsatisfactory user experience
• Severe reputational and/or financial loss

• Still widely existing...
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Source: https://www.k-international.com/blog/translation-fails-2018/

Source: https://www.rws.com/insights/rws-moravia-blog/
eight-of-the-most-bizarre-translation-fails-of-2018/

Source: https://www.searchenginepeople.com/blog/10-google-translate-fails.html



Bilingual parallel corpora

Sentence in Language A

Reference Translations 
in Language BReference Translations 

in Language BReference Translation(s) 
in Language B

NMT Quality Assurance:
Common Practice
• Reference-based black-box system testing
• Performed during in-house development
• Evaluate on human-made bilingual parallel corpora
• Calculate and observe translation quality indicators 

(e.g., BLEU scores)
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NMT Quality Assurance:
What About Being Reference-free?
• Desirable benefits in industrial settings
• Helping with translation quality improvement on 

more data
• Enabling in-vivo testing and continuous monitoring in 

the production environment
• Handling translation failures gracefully

• Existing approaches do not fulfill such demand
ØWe aim for a practical and scalable solution to 

this challenge for our product
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Reference-free Translation Failure 
Detection: Our Approach
• Focus on the 1-to-1 constituent mapping 

property of translation
• Can be checked systematically

• Leverage both original texts and translated texts
• As opposed to reference-based approaches

• Hybrid property violation detection strategy
• Both statistical and systematic analysis
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Constituent Mapping Property

• Constituents (e.g., words/phrases) are generally 
1-to-1 mapped
• Between the original text and the translation

• Any violation of this property in the translation 
indicates potential translation failures
• Two types of violations: under- and over-

translation
• Many translation failures can be reflected through 

these two types of violations
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• Under-translation: words/phrases from the 
original text are missing in the translation

• Over-translation: unnecessary repeats of 
words/phrases in the translation

Under- and Over-translation
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Example of under-translation

Example of over-translation



Overview of Violation Detection
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Phrase 
identification

Word/phrase 
mapping learning

Training
parallel corpora

• First step: build mappings between bilingual 
words/phrases using training parallel corpora



Overview of Violation Detection
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Phrase 
identification

Word/phrase 
mapping learning

Error-rate 
filtering

Training
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Under-translation 
detection

Original text + 
translation to be 

inspected

• Under-translation detection: check the existence 
of word/phrase translations w.r.t. mappings
• Need to consider implicit translations



Overview of Violation Detection
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Over-translation 
detection

• Over-translation detection: compare the 
occurrences of words/phrases in the original text 
and translation



Bilingual Mapping Building:
Phrase Identification
• Necessary because phrases can convey different 

meanings from just their comprising words
• Intuitive way: consider all frequently-occurring 

continuous word sequences with length <= k
• w1w2w3w4w5. . . -> <w1,w2,w3> <w2,w3,w4> <w3w4w5>...
• But phrases can have variations

• Our approach: consider frequently-occurring 
word pairs that are <= k away from each other
• w1w2w3w4w5. . . -> <w1,w2> <w1,w3> <w1w4> <w2,w3> 

<w2,w4> <w2,w5>... (k = 3)
• For both efficiency and robustness
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Bilingual Mapping Building:
Mapping Learning
• Item-based Collaborative Filtering
• User rating matrix -> item recommendations
• Similar items should have similar rating distributions
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• 1,2,.. ,n represent items
• 1,2,... ,m represent users

Credit: Sarwar, Badrul Munir, George Karypis, Joseph A. Konstan, and John Riedl.
“Item-based Collaborative Filtering Recommendation Algorithms.” WWW 2001.



Bilingual Mapping Building:
Mapping Learning
• Item-based Collaborative Filtering
• Item -> each word/phrase in the source/destination 

languages
• User -> each bilingual sentence pair
• Rating -> whether the word/phrase appears in the 

sentence pair (of the corresponding language)
• Similarity -> Cosine similarity of rating vectors
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Under-translation Detection

• Check the existence of each word/phrase 
translation w.r.t. mappings

• Caveat: implicit translations
• Some words/phrases might not need to appear in the 

translation text
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Origin # 1 # 2 # 3 # 4 # 5

妈妈 mother mom mum mama mommy



Under-translation Detection:
Handling Implicit Translations
• Error-rate filtering
• A word/phrase causes too many translation failures -> 

Likely the word/phrase does not need to be explicitly 
translated

• 𝑒& = #&'(( / #& for each word/phrase w
• Calculated on the training corpora

• A pre-defined threshold from experiments
• 𝑒! < 0.2 in our case
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Over-translation Detection

• Find duplicate words/phrases in the translation
• Not sufficient evidence of over-translation

• Reverse-lookup duplicated words/phrases w.r.t.
mappings
• Is # of corresponding words/phrases < 

duplicated translation occurrences?
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1 occurrence of 
change

4 occurrences of 
“change”



Algorithm Effectiveness Evaluation

• 4 manually labeled datasets
• Real-world translation tasks + corresponding 

translations with under-/over-translation
• News and oral sentences between English and 

Chinese

• 2 alternative algorithms for comparison
• Generic dictionary lookup
• Word-alignment from SMT

• Highest F-measures in all tasks
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Experience of Deployment

• Deployed on WeChat, a messenger app with over 
one billion monthly active users worldwide
• Message translation function, powered by a 

proprietary NMT system

• Process about 12 million translation tasks daily
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Experience of Deployment

• Fully rolled out in the production environment
• Reveal issues undetected by in-house testing
• Handle failures instantly through alternative models
• Monitor the performance of newly-deployed models

• Lead to significant drop of two types of violations
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Experience of Deployment

• Help build an in-house test set for regular 
development
• 130,000 English and 180,000 Chinese words/phrases
• Reveal design/implementation/training data defects in 

both ours and competing NMT systems
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Bilingual parallel corpora
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NMT Quality Assurance:
Common Practice
• Reference-based black-box system testing
• Performed during in-house development
• Evaluate on human-made bilingual parallel corpora
• Calculate and observe translation quality indicators 

(e.g., BLEU scores)
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